
_J

N89-10064

/

Maintaining an Expert System for the

Bubble Space Telescope Ground Support /f_ ./

{May 13, 1987 _k._

Kelly Lindenmayer 1

Astronomy Programs, Computer Sciences Corporation

Shon Vick

Space Telescope Science Institute _ _/- !_._ _f _
j/

3700 San Martin Drive

Baltimore, MD 21218

and

Don Rosenthal _ C
NASA Ames Research Center

Abstract

/

/

/
/

The Transformation portion of the HST Proposal Entry Processor System converts an

astronomer-oriented description of a scientific observing program into a detailed description

of the parameters needed for planning and scheduling. The Transformation system is one

of a very few rulebased experts systems that has ever entered an operational phase. The

day to day operation of the system and its rulebase are no longer the responsibility of the

original developer. As a result, software engineering properties of the rulebased approach

become more important. In this paper, we discuss maintenance issues associated with the

coupling of rules within a rulebased system and offer a method for partitioning a rulebase

so that the amount of knowledge needed to modify the rulebase is minimized. This method

is also used to develop a measure of the coupling strength of the rulebase.

1Staff Member of the Space Telucope Science Institute

2Operated by the Association of Universities for Research in Astronomy for the National Aeronautics and

Space Administration

1 Introduction

The Hubble Space Telescope (HST) is an orbiting optical observatory to be launched by the

Space Shuttle in late 1988. Using a rulebased expert system written in OPS5, the Transfor-

mation system converts an astronomer-oriented description of a scientific observing program

into a detailed description of the parameters needed by the planning and scheduling portion

of the HST Science Operations Ground Support System. 3 Transformation has been in an

operational phase since December 1985. During its early stages of the operational phase,

the primary designer and implementer of the rutebased portion of the Transformation Sys-

tem remained responsible for development and maintenance of the rulebase. Eight months

later, the system was turned over to a member of the software group who had limited

prior exposure to the project. The Transformation system is one of a very small number of

rulebased expert systems that has entered an operational phase. Rulebased systems have

traditionally been developed as research projects, and have been maintained by their orig-
inal implementers. As expert system techniques and technolgy mature, a trend towards

developing rulebased systems for practical applications will occur. These systems will be

developed with the expectation that they will grow and evolve throughout the life of the

project. With this evolution, the notion of a software life cycle becomes relevant and the

software life cycle that rulebase systems undergo does not correspond to that of conven-

tional software systems. 4 Unlike software problems that are solved by a more algorithmic

approach, AI programs tend to implement problems which have not been completely speci-

fied. As a result, expert systems raise some interesting software engineering considerations.

In this paper, we discuss some of the maintenance issues associated with the coupling of
rules for a rulebased system. We present a method for partitioning a rulebase in such a

way that the knowledge required to make a modification to the rulebase is minimized. The

method is also used to derive a metric that can be used as a measure of coupling strength.

2 Background

In OPS5, like many expert system languages, knowledge is encoded as a set of rules or
productions with the following format:

IF antecedents THEN consequents

Facts from a global database, usually termed working memory, are matched with the an-

tecedents (also referred to as left hand side or LHS). The matched rule/facts pairs (in-

stantiations) are put into a conflict set. A conflict resolution strategy is applied to the

set to determine the instantiation to be fired. During the firing process, the consequent

prescribed by the rule corresponding to the instantiation is established. In general, this

process creates new facts, and the inference cycle proceeds to the match step. This process

continues until the conflict set is empty or the process is halted explicitly by the program-
mer. This paradigm encourages the opportunistic behavior of rules and when the situation

is right (e.g. when the antecedents match the facts), the rules are instantiated and fired.

_Transformation is described in detail in {7!

4See 151 for more information

2

This phenomenon distinguishes rulebase systems from an algorithmic approach to software

problems. In other words, the order of application of the program's functional pieces (in

this case rules), is not built into the program, and will not be determined until runtime.

On another level, such inferencing systems may seem to be common coupled. In common

coupling, functional modules are linked through a global data structure. In OPS5 any rule

may potentially read or write any part of working memory since rules share the entire

working memory data area. However, working memory is partitioned into elements of

data classes (analogous to traditional data structures), and rules refer to working memory

elements by class name, and attribute (field) name. Therefore, coupling in rulebased systems

more closely resembles stamp coupling. Stamp coupling is similar to common coupling

except that the global data items are shared more selectively between components that use

them. s

The partitioning of groups of rules according to a goal strategy is presently one of the more

viable method of controlling inferencing in OPS5 (compared to, for example running several

smaller ruebased programs in sequence). There is no way for the developer to _program"

the conflict resolution strategy, she may only choose between MEA and LEX. s Meta rules

are not presently possible due to the strict partitioning of rule memory, working memory,

and the conflict set. 7

The Transformation rulebase is a goal oriented rulebase which consists of seven goals, some

of which contain sub goals and task lists, but all control is imposed at a very high level. The

rulebase is _partitioned _ into goal sets which reside in files; that is, rules pertaining to a

specific goal or subgoal are found in a single file. When writing rules, the natural tendency

is to group rules according to their functionality. For instance, a knowledge engineer might

group in a file all rules that merge exposures. From the maintainers standpoint, this method

has its disadvantages as well as advantages. The most obvious advantage is that if a new

rule to merge exposures needs to be added, there are several examples for a maintainer to

follow. In addition, if a problem arises in how exposures are merged, the problem area may

be localized, and hence easier to debug. The disadvantage lies in what occurs downstream

from this problem. For instance, if a new rule is added to merge exposures, what else might

that change affect? This is a formidable problem for a maintenance programmer who is not

well versed in the structure inherent in the rulebase.

Other AI developers s have suggested an automated approach to partitioning a rule set

based on a measure of _relatedness'. Rules would be grouped according to the facts that

they share - where a fact is some data representation that if changed in one rule would affect

another rule in some way. Since there are several ways in which two rules could reference the

same fact, the facts would be weighted, and the measure of _relatedness" would be based on

these facts. The rulebase would then be partitioned into groups according to how strongly

rules were related. Although these arguments and the related tools have merit, there are

still some issues that need to be addressed. For instance, choosing a measure of relatedness

is still a rather arbitrary process, although a more sophisticated clustering algorithm to

partition the rulebase might be helpful. In addition, within a partitioned rulebase, there

_See 14iand [2]fora completediscussionofcommon and stamp coupling

6Referto [I]foran explanationofMEA and LEX

7See [61fora discussionofmeta rules

8See !3]fordetails

may be subtle interactions between rules within a set of grouped rules or between the groups

themselves. Moreover, the grouping procedures do not guarantee a small number of groups.

What is needed then, is a method for maintenance programmers to understand the coupling

of rules in general.

3 A Model for Partitioning a Rulebase

We first take a look at the possible ways in which rules may be coupled. We know that

rules are related to one another through the facts that they share. In OPS5 there are

essentially three different ways of altering facts in working memory: through a make, modify

or remove. A make creates a new working memory element. A remove deletes a working

memory element from the database. Conceptually, a modify is a combination of a make

and a remove. It deletes a working memory element, and replaces it with the appropriate

new working memory element.

Below is an example of two rule which are coupled by a make action. (All of the following

examples are actual rules from the Transformation rulebase. For the purposes of under-

standing how rules are coupled, it is not necessary to comprehend the semantic content of

the rule.) The first rule, Find-parallel-with-mergeable-ezposuresuses the make command

to create a working memory element with class name mergeable.ezposures. Since the spec,

ified attributes of this working memory element "match" a subset of the antecedent of

rule Remove-mergeable-ezposures-if-same-mode.diff.aperture, we consider these rules to be

related.

(p find-parallel-with-mergsable-expoeure$

(goal

"has-name

"has-status

"task-list

merge-exposures

active

find-potsntial-sxposure-merKe$)

(exposure-link

"hao-expoaure-nuaber

"is-linked-to

"has-link-type

<parallel-exposure>

<primary-exposure>

parallel-with)

(aergeable-level

"symbol

"value

-->

parallel-with

<parallel-with-level>)

(make mergeabla-expooureo

"first-exposure-number

"second-exposure-number

"ia-unmergeable

"isomergeable-level

"merge-type

"has-unique-label

<primary-exposure>

<parallel-exposure>
false

<parallel-with-level>

parallel-with

(Kenatom)))

(P Remove-morgeable-expoeuree-if-eame-mode-diff-aperture

(goal
"haa-name
"has-atatue
"tack-liar

merge-expoauree

active

find-potential-expoaure-mergee)

(expoaure-apocification

"is-internal-target-type

"has-exposure-number

"first-aperture-used

(mergeable-level

"aymbol
"value

(<merKeable-expoaure-link>

(mergeable-expoeurea

"firat-expoeure-number

"i8-mergeable-level

"aecond-expoeure-number

(expooure-epecification

"haa-expoaure-nuaber

"ie-internal-target-type

"firet-aperture-ueed

<> I

<first-exposure>

<aperture>

parallel-with

<parallel-with-level>)

<firat-expoeure>

<parallel-with-level>

<lecond-expoeure>) }

<eecond-expooura>

<> I

<> <aperture>
-->

(modify <mergeable-expoeure-link>

"1 unaerged-expoourea))

When discussing relatedness, it is important to keep in mind that this is a static analysis

of the problem. Because rulebased systems are data driven, rules will interact differently

with different sets of data. A static approach to the problem is simply, what portion of the

rulebase might possibly be affected by a particular rule change, given any set of data.

Figure 1 gives a pictorial representation of the relationship between these two rules. It

shows that if Find-parallel-with-mergeable.ezposureswere modified, there is a possibility that

Remove-mergeable-ezposures.if.same.mode.diff.aperture might be affected by the change.

Find-parallel-with _ .= (_mergeable-exposures
v Remove-mergeable-exposures- 1_,. if-same-mocle-diff-aperture

Figure 1.0 Coupling Rules through a make action

Next we look at two rules that are coupled by a remove action. The rule, Remove-mergeable.

ezposures-if-first-is-an.acquisition removes a working memory element that may have been

created by Find-parallel-with-mergeable.ezposures:

(p find-parallel-with-mergeable-exposure8

(goal

"has-name

"has-statue

"task-list

norse-exposures
active

find-potential-exposure-merges)

(exposure-link

"has-exposure-number

"is-linked-to

"has-link-type

<parallel-exposure>

<primary-exposure>

parallel-with)

(mergeable-level

"symbol

"value

-->

parallel-with

<parallel-with-level>)

(make nergeable-exposures

"first-exposure-number

"second-exposure-number

"ia-unmergeable

"is-mergeable-level

"merge-type

"has-unique-label

<primary-exposure>

<parallel-exposure>
false

<parallel-with-level>

parallel-with

(genatom)))

(p Remove-mergeable-axpoauree-if-firat-is-an-acquisition)

(goal

"has-name

"has-statue

"task-list

merge-exposures
active

find-potential-exposure-merges)

._<mergeable-expoaure-link>

(mergeable-expoaures

_first-exposure-number

(exposure-link

"has-exposure-number

"has-link-type
-->

<first-exposure>) }

<first-exposure>

<<ONBOARD-ACQ INT-ACQ >)

(remove <mergeable-exposure-link>))

We will represent the relationship of two rules coupled by a remove as is shown in figure

2.0. Note that we picture the relationship slightly different for a remove coupling than

we did for a make coupling. In the case of a remove , the arrow is pointing in the

6

opposite direction to show that in order for Find-parallel-with-mergeable-ezposures to be

affected by a modification of the rule Remove.mergeable.ezposures.if-first-is-an-acquisition,

Find-parallel-with-mergeable-ezposures must already have been instantiated based on this

working memory element.

Remove-mergeable-exposures- _--" Iif-first-is-an-acquisition J -

Find-parallel-with-

mergeat)lHxposures

Figure 2.0 Coupling Rules through a remove action

In order to demonstrate the coupling created by a modify, itisnecessary to use three rules.

The firstrule Remove.fos-hrs-merge-if-only-second-mode-is-rapid uses the modify action

to change the class name of mergeable-ezposuresto unmerged-ezposures. Since the specified

attributes of the working memory element with classname unmerged-ezposures _matches"

the antecedent of the rule link-alignments-with-unmerged-exposures, these rules are said to

be coupled. On the other hand, when Remove-fos-hrs-merge-if-only-mode.is-rapid uses the

modify action to change the classname of a working memory element itisinaffectremoving

the working memory element mergeable-ezposures. So, based on the same principle as the

remove example, we consider these two rules also to be coupled.

(p Find-same-orientation-mergeable-expoeuree

(8oal

"has-name
"has-statue

"task-list

merge-exposures

active

find-potential-exposure-merges)

(exposure-link

"has-exposure-number

"is-liked-to

"has-link-type

<linked-exposure>

<main-exposure>
SAME-ORIENT)

(exposure-specification

"has-exposure-number

"uses-SI-configuration

<main-exposure>

<SI-confieuraZion>)

(exposure-specification

"has-exposure-number <linked-exposure>

"ueee-SI-configuration

(mergeable-level

_eymbol

"value

--->

(make nergeable-exposuree

"first-exposure-number

"second-exposure-number

"ie-unaergeable

"is-mergeable-level

"norse-type

"has-unique-label

<SI-configuration>)

same-orientation

<sane-orientation-level>)

<main-exposure>

<linked-exposure>

true

<anne-orientation- level>

same-orientation

(Kenaton)))

v

(p Remove-foa-hra-nerge-if-only-eecond-node-is-rapid

(goal

"has-name

"has-status

"task-list

merge-exposures

active

find-potential-exposure-merges)

_<nerKeable-expoeure-link>

(merseable-expoaure8

"first-exposure-nulber

"second-exposure-number

"merge-type

"ie-unmergeable

<first-exposure>

<second-exposure>

<<sequence-no-sa p consecutive
sane-orientation>>

true) }

(exposure-specification

"has-exposure-number

"uaee-SI-confiKuration

"uaee-SI-operating-node

<first-exposure>

<< foa/bl fos/rd hrs >>

<> rapid)

(exposure-specification

"has-exposure-number

"uaea-SI-operating-node
---->

<ascend-exposure>

rapid)

(modify <nergeable-expoeure-link>

"I unaerged-expoeure8))

(p link-alignmenta-vith-unmerged-expoeuree

(goal

"has-name merge-alignments

"has-statue active

"task-list find-potential-alignment-merges)

(unmerged-expomurea

"firlt-exposure-number <first-exposure-number>

"first-copy-number <first-copy>

"second-exposure-number <second-exposure-number>

"second-copy-number <second-copy>)

(assignment-record

"has-Pepsi-exposuxe-number <first-exposure-number>

"i|-assia_nment-record-copy-number <first-copy>

"has-alignment-order <first-alignment-order>

(assia_nment-record

"has-Pepsi-exposure-number <second-exposure-number>

"is-assignment-record-copy-number <second-copy>

-has-alisnment-order _ <second-alignment-order> <>

<first-alignment-order> }

-->

(make mezgeable-alignments

"has-first-alignment-order <first-alignment-order>

"has-second-alignment-order <second-alignment-order>

"has-unique-label (genatoa)))

(Remove-fos-hrs-merge-if- 1o nly-secon(:l-mode-is-rapid

link-alignments-with-

unmerged-exposures

Fincl-same-orientation-

mergeable-exposures

Figure 3.0 Coupling Rules through a modify action

4 A More Formal Way to Express Coupling

What we have seen so far is that if two rules are coupled by our definition, the rhs of one

rule feeds the lhs of another rule. But what is actually meant by one rule feeding another?

Let's introduce a notation to make the notion precise.

We can think of a rule as consisting of three parts: its name, its associated conditions, and

its actions. A rule j is denoted by R:.

The first condition of the lha of Ry is called cj,1 , the second cj,2 and so on. Similarly the
first action will be aj,1 and so forth.

We say R 3 feeds R/ if the pattern corresponding to some action of R_ , say ay,z matches

some condition clause of rule P_, say ci,v. This is expressed in a predicate calculus as :

3 x (h aj, %))

where fp is a function that given some rule action returns the pattern to which the rule

action corresponds, and pm is a predicate that takes two patterns and returns true if they
match and false otherwise.

As examples of the notation suppose Ry is the rule find'parallel-with-mergable.ezposures

and R, is the rule Remove-mergable-ezposures-if.first.is.an.acquisition. Then:

(h a,,1) =

(mergeable-exposuree

"flrat-proposal-id

"flrat-veraion

"first-exposure-number

"second-proposal-id

"second-verslon

"second-exposure-number

_is-unmergeable

"is-mergeable-level

"merge-type

"has-unique-label

<parallel-proposal-id>

<parallel-version>

<primary-exposure>

<parallel-proposal-id>

<parallel-verslon>

<parallel-exposure>

false

<parallel-with-level>

parallel-with

(genatom)

and

c,,_ is

(mergeable-exposures

"first-proposal-id

"first-version

"first-exposure-number

<proposal-id>

<version>

<first-exposure>)

and (p,.n (/pay, l) c,,2) is true.

The general operation of the predicate p,,_ on the simple type matches should now be

presented. If the element class of two patterns differs, then the predicate returns false.

Otherwise, an attribute by attribute match is attempted. If an attribute is paired with a

variable in one or both patterns, then the patterns match on that attribute. If they both

are paired with the same constant, then again they match. If the attribute is not mentioned

in the condition pattern, then it matches the action pattern for the attribute. Note that

the pm predicate returns true if all corresponding pairs of attributes match.

10

5 Using the Network

Clearly if every rule is coupled with every other rule in the system then the system is

completely coupled. The maximum number of arcs is then n 2, where n is the number of
rules in the rulebase. The ratio of actual arcs in the network to n 2 is a measure of the

degree to which the rulebase is coupled. If the ratio is unity then any rule could interfere

with any other. The lower the ratio the more local is the effect of a typical rule in the

rulebase and the higher the degree of stamp coupling in the system.

To find the group of rules whose behavior may be directly affected by the addition of a new

rule we need only regard the network of rules. Figure 4.0 represents a part of the network

for some rulebase. The dotted arcs in the figure represent the new coupling that will occur

if rule new-remove is added to the rulebase. Suppose for the sake of simplicity that both

R1 and R6 contain a single make action on their rhl. The solid coupling lines flowing from

R1 represent the match that occurs between the newly created wme from the make action

of R1 and the conditional elements on the lhs of R2 and R3. (This is also true for the

solid lines between R6 and R3,R4, and R5). The dotted line from R1 to new-remove shows

that the make-pattern which creates a working memory element will match some set of

conditional elements on the LHS of new-remove.

NEW RULE

Figure 4.0 Grouping Rules

Now, note that it is only possible to remove something from the right hand side of a rule,

if the pattern is matched on the left hand side of that same rule. Therefore, the pattern
of the element removed in new-remove will match some condition in R2 and R3. If new-

rule fires, and instantiations corresponding to rules R2 and R3 are in the conflict set, the

11

instantiations will be removed. Thus, the behavior of rules R2 and R3 is altered by the

addition of new-remove. If R2 and R3 are not fully matched, they will exist in the Rete

network. In this case, the new-remove will push these rules farther away from the conflict

set. Note also that the behavior of R1 is not affected by the addition of new-remove.

We can make a similar argument for rules R4 and R5 based on the coupling between R6

and new-remove. Simply put, the group of rules affected by the addition of new-remove will

be those rules with the same parent as new rule (i.e. the siblings of new-remove).

We therefore see that the group of rules that the new rule could possibly affect directly

is { Rz , R3, R4, Rs } • Naturally the instantiations actually affected by the firing of a rule

depends on the data on which a system is operating and the conflict set resolution strategy.

The case for adding a new make rule is similar.The group of rules whose behavior might be

affected directly is the set of all immediate successors to the new rule. A new modify, since

it is functionally the same as a make and remove, will affect the union of the two groups

directly.

Although we have not yet implemented the tool for construction and transversal of the

network, its implementation in Lisp should be fairly straightforward. The formal presenta-

tion is written mostly in terms of predicates and functions. A dialect of Lisp that supports

object-oriented programming could be used to represent nodes by making each node in the

net an instance of a "rule class". Methods could be attached to these classes that would

retrieve a rule's predecessors, successors, etc. Having devised this general framework for

determining coupling between rules, our work is now directed toward implementing this

tool and exercising it on the Transformation system.

6 Conclusions

The Transformation system is one of a small group of rulebased systems that has entered

into an operational phase. Because the original developer is no longer involved with the

day to day operations of the system, the software engineering attributes of the system have

become more important. This paper has focused on the nature of rule coupling in the

system and has presented a method for understanding the coupling properties of the OPS5

rulebase. We have constructed a general network depicting how rules are coupled within

a rulebase, and this network is the basis for deriving a measure of the degree of common

coupling for the rules within the rulebase. Furthermore, we have shown how a tool which

operates on the principles of this network will allow a maintainer to modify a rulebase with

a clearer understanding of how the modification will impact the existing rulebase.

12

References

ili Brownston, L., Farrell, R., Kant, E., and Martin, N., Programming Ezpert Systems in
OPS5, Addison-Wesley, 1985, pp. 62-64.

[2] Fairley, Richard E., Software Engineering Concepts, McGraw-Hill, 1985, pp. 148-151.

[3] Froscher, J. and Jacob, R., Designing Expert Systems For Ease of Change, IEE Pro-

ceedings of the Expert Systems in Government Symposium, October 1985, pp. 246-251.

Myers, Glenford J., Reliable Software Through Composite Design, Van Nostrand Rein-
hold Company, 1975, pp. 37-39.

Partridge, D. Engineering Artificial Intelligence Software, Artificial Intelligence Re-
view, Vol 1., No.l, 1986, pp. 27-41.

Rosenthal, D., Adding Meta Rules to OPS5 A Proposed Extension, ACM SIGPLAN

Notices, vol 20, no. 10, October 1985, pp. 79-86.

Rosenthal, D., Monger P., Miller G., and Johnston, M., An Expert System for Ground

Support of the Hubble Space Telescope, Proceedings of 1986 Conference on Artificial

Intelligence Applications,NASA Goddard Space Flight Center, May 15, 1986, pp. 43-
54.

[4J

I5]

I6]

f7i

13

